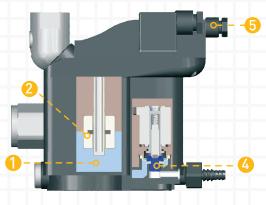
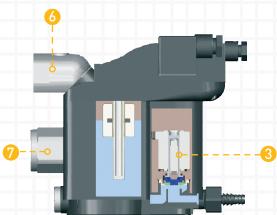


Zero Air Loss Condensate Drains

for Compressed Air Applications



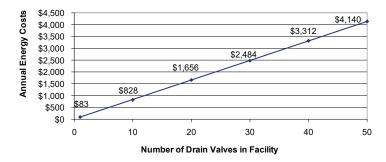


How does the Finite Zero Air Loss Condensate drain compare to other drains?

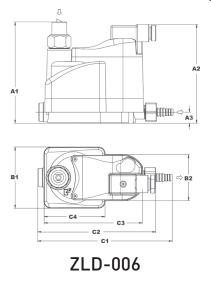
Condensate Removal Method	Disadvantages of Other Drains	Advantages of Finite's ZLD	
Manual Drain (operators must manually open valves to discharge condensate)	Requires constant attention	Automatically drains condensate	
	Always leads to excess air loss because air escapes when the valve is left open to drain the condensate	When a minimum level of condensate is reached, the valve closes in time before compressed air can escape	
Float Drain (uses a float connected to a drain valve that opens when enough condensate is present and closes when condensate has been removed)	Float is susceptible to blockage from particulate contamination in condensate	Includes an integrated dirt screen between th level measurement and drain valve to protect the diaphragm valve	
	Often sticks in open (leaks excess air) or closed position (no condensate is drained)	Particulate contamination is removed by the integrated dirt screen before fouling the moving parts	
Solenoid Operated Drain Valves (uses a timer which allows user to open and close valve at specified intervals)	The period for which the valve is open might not be long enough for adequate drainage of accumulated condensate	Drain will remove condensate when liquid reaches the high level sensor	
	The valve will operate even if little or no condensate is present, resulting in air loss	The drain will not operate until the liquid level reaches the high level sensor	
	Often requires a strainer to remove particulate contamination which can block the inlet and outlet ports	Particulate contamination is removed by the integrated dirt screen before fouling the outlet port	

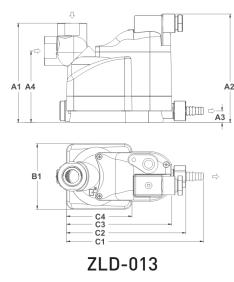
How does this drain work?

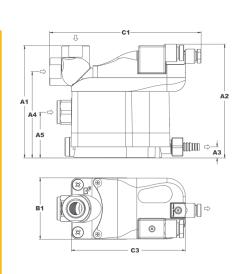
- 1 This collection vessel stores condensate until it is drained away.
- This electronic level controller continuously monitors the liquid level inside the drain.
- This depicts the electric drain valve. As soon as the electronic level controller detects a buildup of liquid, the valve opens and condensate is drained. When a minimum liquid level is reached, the valve closes before compressed air can escape.
- The diaphragm valve ensures that contaminants are flushed out and that the condensate is prevented from forming an emulsion that would need expensive condensate treatment.
- If an error has occurred (i.e. if the condensate cannot be discharged), the electronic control board (5) of the condensate drain generates an alarm signal. This allows timely detection of a problem and helps avoid excessive costs associated with condensate carryover to downstream components.
- Unique swivel inlet connection for easy adaptability on ZLD-013 and ZLD-023. This allows the condensate line to be connected from the top or the rear. The ZLD-006 has a fixed inlet port with dynamic seal which allows the filter bowl to be removed while the drain is attached (not shown).
- An additional liquid inlet on the ZLD-023 allows for the connection of a balance or vent line. This provides new connections so that condensate can no longer back up into the feed lines.


The cost of compressed air when using a timed drain valve

The annual cost of compressed air was calculated using data from the U.S. Department of Energy and several compressed air consultants. The average annual energy cost to maintain a compressed air system is \$0.23 per 1000 ft³. If a timed solenoid drain valve opens 3-4 times per hour, the cost of the wasted air will be \$80 per valve, per year.


Finite's Zero Loss Drains don't waste any compressed air and have a payback of approximately 6 months to 1 year.


Annual Savings of a Zero Air Loss Drain


Versus Timed Solenoid Drain Valves

Dimension Drawings

ZLD-023, -100, -330

Specifications

Dimensions (in)	ZLD-006	ZLD-013	ZLD-023	ZLD-100	ZLD-330
A1	4.33	3.97	4.80	5.39	7.75
A2	4.21	4.37	4.84	5.39	7.79
A3	0.47	0.47	0.47	0.47	0.47
A4	_	2.87	3.66	4.25	6.61
A5	_	_	1.94	1.94	1.94
B1	2.63	2.63	2.63	2.63	2.63
B2	1.96	_	_	-	_
C1	5.74	5.47	6.45	6.45	6.45
C2	5.03	4.76	_	_	_
C3	4.17	4.21	4.88	4.88	4.88
C4	1.73	2.63	_	_	_
Weight (lbs.)	1.10	1.32	2.20	2.42	3.30

NPT connections at condensate inlet					
Top Inlet	3/8"	1/2"	1/2"	1/2"	1/2"
Vent	Integrated in connection	1/8"	1/8"	1/8"	1/8"
Bottom vent	_	_	1/2"	1/2"	1/2"
Connection at condensate outlet					

3/8" BSP or 0.3–0.4 in hose tail

ZLD-006

ZLD-013

ZLD-023, -100, -330

Tachnical Data					
Technical Data	ZLD-006	ZLD-013	ZLD-023	ZLD-100	ZLD-330
Compressor aftercooler (SCFM)	_	141	247	1059	3531
Refrigeration dryer (SCFM)	_	282	494	2118	7062
Filter ² (SCFM)	424	1410	2470	10590	35310
Nominal flow rate (ft³/h)	0.035	0.074	0.13	0.57	1.87
Operating pressure range	3-232 psig				
Temperature range	35-140°F				
Supply voltage ³ (selectable)	115 V—60 Hz 50-60 Hz.24 Vac/50-60 HZ 50-60 Hz/24 V DC (available on request)				
Potential-free contact ⁴	110 V DV, 250 V AV — 1A 30 W DC, 250 VA AC				
Power Consumption: Standby Valve operation	1 VA 6 VA		1.8 VA 6.8 VA		
Protection class	IP 65				

1. At 14.5 psi and 68°F, operating pressure 100 psi, suction: compressor or 77°F at 60%relative humidity, compressed air outlet temperature at aftercooler 95°F; refrigeration dryer dewpoint 37.4°F.

Main condensate already drained from aftercooler or refrigeration dryer; only for residual oil or low condensate volumes arising from condensation.

Magnetic valve connector type B industrial standard (0.43 in) 2+PE. Magnetic valve connector type C industrial standard (0.37 in) 3+PE.

Worldwide Filtration Manufacturing Locations

North America

Compressed Air Treatment

Industrial Gas Filtration and Generation Division

Lancaster, NY 716 686 6400 www.parker.com/igfg

Haverhill, MA 978 858 0505 www.parker.com/igfg

Engine Filtration

Racor

Modesto, CA 209 521 7860 www.parker.com/racor

Holly Springs, MS 662 252 2656 www.parker.com/racor

Hydraulic Filtration

Hydraulic & Fuel Filtration

Metamora, OH 419 644 4311 www.parker.com/hydraulicfilter

Laval, QC Canada 450 629 9594 www.parkerfarr.com

Velcon

Colorado Springs, CO 719 531 5855 www.velcon.com

Process Filtration

domnick hunter Process Filtration SciLog

Oxnard, CA 805 604 3400 www.parker.com/processfiltration

Water Purification

Village Marine, Sea Recovery, Horizon Reverse Osmosis

Carson, CA 310 637 3400 www.parker.com/watermakers

Europe

Compressed Air Treatment

domnick hunter Filtration & Separation

Gateshead, England +44 (0) 191 402 9000 www.parker.com/dhfns

Parker Gas Separations

Etten-Leur, Netherlands +31 76 508 5300 www.parker.com/dhfns

Hiross Zander

Essen, Germany +49 2054 9340 www.parker.com/hzfd

Padova, Italy +39 049 9712 111 www.parker.com/hzfd

Engine Filtration & Water Purification

Racor

Dewsbury, England +44 (0) 1924 487 000 www.parker.com/rfde

Racor Research & Development

Stuttgart, Germany +49 (0)711 7071 290-10

Hydraulic Filtration

Hydraulic Filter

Arnhem, Holland +31 26 3760376 www.parker.com/hfde

Urjala, Finland +358 20 753 2500

Condition Monitoring Parker Kittiwake

West Sussex, England +44 (0) 1903 731 470 www.kittiwake.com

Process Filtration

domnick hunter Process Filtration Parker Twin Filter BV

Birtley, England +44 (0) 191 410 5121 www.parker.com/processfiltration

Asia Pacific

Australia

Castle Hill, Australia +61 2 9634 7777 www.parker.com/australia

China

Shanghai, China +86 21 5031 2525 www.parker.com/china

India

Chennai, India +91 22 4391 0700 www.parker.com/india

Parker Fowler

Bangalore, India +91 80 2783 6794 www.johnfowlerindia.com

Japan

Tokyo, Japan +81 45 870 1522 www.parker.com/japan

Korea

Hwaseon-City +82 31 359 0852 www.parker.com/korea

Singapore

Jurong Town, Singapore +65 6887 6300 www.parker.com/singapore

Thailand

Bangkok, Thailand +66 2186 7000 www.parker.com/thailand

Latin America Parker Comercio Ltda.

Filtration Division Sao Paulo, Brazil +55 12 4009 3500 www.parker.com/br

Pan American Division

Miami, FL 305 470 8800 www.parker.com/panam

Africa

Aeroport Kempton Park, South Africa +27 11 9610700 www.parker.com/africa

© 2019 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies.

BRO-FNT-ZeroAirLossDrain-062019

Parker Hannifin Corporation Industrial Gas Filtration and Generation Division 4087 Walden Avenue Lancaster, NY 14086 phone 800 343 4048 www.parker.com/igfg

WARNING: Proposition 65
products described herein can expose you to chemicals known to the
State of California to cause cancer or reproductive harm.
For more information: www.P65Warnings.co.gov

State of California ONLY